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Three-dimensional ribbing instability in
symmetric forward-roll film-coating processes
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We propose a framework for interpreting the formation, evolution, and spatial per-
sistence of ribbing in coating processes, and present companion ‘quantifying’ parallel
spectral element simulations of fully nonlinear unsteady three-dimensional free-surface
symmetric forward-roll film-coating fluid flows. The framework couples, by means of
a transition region, two well-understood phenomena: the ‘viscous fingering’ instability
of a splitting meniscus; and the levelling of viscous films under the effect of surface
tension. The transition-region length, Lt, is on the order of the coating film thickness,
while the downstream extent of the levelling region – the distance over which ribs
persist – L`, depends on the fluid properties, the flow conditions, and the wavenumber
content of the nonlinear meniscus rib profile. Numerical results are presented for the
evolution of the coating flow from perturbed unstable two-dimensional steady states
to three-dimensional saturated ribbed states for several representative supercritical
capillary numbers, Ca, and spanwise periodicity lengths, b. Nonlinear state selection
is briefly discussed.

1. Introduction
The coating of continuous webs is an important manufacturing process which

finds wide application in the photographic and publishing industries. Although much
effort has been devoted to developing and studying processes for the production
of uniform films, a major cause of defects – the three-dimensional hydrodynamic
phenomenon known as ‘ribbing’ or ‘ribbing-line instability’ – is not yet completely
understood. Ribbing is characterized by a spanwise waviness of the film free surface
(Pitts & Greiller 1961; Ruschak 1985; Coyle, Macosko & Scriven 1990b) that extends
downstream with the web, and that, in most applications, renders the finished product
useless.

1.1. Brief summary of previous work

In this paper we study ribbing in the symmetric forward-roll coating device depicted
in figure 1. In the forward-roll coating process, two counter-rotating rollers entrain
and meter fluid onto a web. During normal operation, a continuous uniform film
is produced; however, if the speed of rotation of the rollers or the viscosity of the
fluid is increased, or if the surface tension of the fluid–gas interface is decreased,
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Figure 1. Schematic of a symmetric forward-roll film-coating device: two rollers of diameter D∗,
counter-rotating at angular speed ω∗, entrain fluid of viscosity µ∗, density ρ∗, and surface tension
σ∗, through a metering gap of width H∗.

ribs appear and persist downstream on the film (Pitts & Greiller 1961; Dowson
& Taylor 1979; Ruschak 1985; Coyle et al. 1990b). The rotating speeds for which
ribbing is encountered in symmetric forward-roll coating are uneconomically slow,
and thus other industrial coating processes have been developed and studied. These
other processes (Kistler & Scriven 1983; Ruschak 1985; Christodolou & Scriven
1989; Coyle, Macosko & Scriven 1990a; Cohen & Gutoff 1992; Coyle 1992; Lee, Liu
& Liu 1992; Gutoff 1993) may also exhibit ribbing, but typically at higher coating
speeds. We choose to study ribs in forward-roll coating because, first, we avoid the
complication of static or dynamic contact lines (Dussan V. & Davis 1986; Saffman
1986; Kistler & Scriven 1994), and second, ribs are readily obtained and constitute
the principal defect.

Linear stability theory accurately identifies the onset of ribbing as the growth of
infinitesimal three-dimensional disturbances to two-dimensional steady but unstable
base states (Pearson 1960; Pitts & Greiller 1961; Mill & South 1967; Ruschak 1983;
Coyle et al. 1990b; Rabaud, Couder & Michalland 1991). Lubrication theory and
matched asymptotic expansions predict the two-dimensional base states in the limit of
vanishing gap to roll diameter ratio, H∗/D∗ → 0, in which the inner problem reduces
to the splitting flow between two parallel plates (Ruschak 1983; Coyle, Macosko
& Scriven 1986). (Here, and in what follows, superscript ∗ indicates a dimensional
quantity.) For arbitrary H∗/D∗, numerical approaches must be considered owing to
the two-dimensionality of the flow field and the free-surface-induced nonlinearity.
Coyle et al. (1986) combine the finite-element method and Newton-iteration solution
procedure to compute two-dimensional flow geometries and flow fields for forward-
roll coating for a wide range of H∗/D∗; their reported results are in very good
agreement with experiment (Decré, Gailly & Buchlin 1995).

On the basis of these two-dimensional states, Ruschak (1983), for small H∗/D∗, and
Coyle et al. (1990b), for general H∗/D∗, present numerical solutions to the eigenvalue
problem for the growth rate of infinitesimal three-dimensional disturbances. For a
fixed D∗/H∗, the stability of the two-dimensional base states with respect to three-
dimensional disturbances of given spanwise wavelength, λ∗, is determined by the
capillary number Ca = µ∗V ∗/σ∗, where µ∗, σ∗, and V ∗ = ω∗D∗/2 are the viscosity
and surface tension of the fluid, and the tangential velocity of the rollers, respectively.
The critical capillary number, Cac, for a given geometry, D∗/H∗, is defined as the
minimum capillary number, Ca, for which the greatest growth rate over all disturbance
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wavelengths, λ∗, vanishes. The associated critical eigenfunction has a wavelength, λ∗c ,
and a wavenumber, βc, related by βc ≡ π H∗/λ∗c (note we non-dimensionalize the
wavenumber with respect to the half-gap, H∗/2). The linear stability results presented
by Coyle et al. (1990b) are in very good agreement with experimental observations for
the onset of ribbing (Pitts & Greiller 1961; Mill & South 1967; Benkreira, Edwards
& Wilkinson 1982; Coyle et al. 1990b), confirming that the instability – disregarding
imperfections such as end effects – is a supercritical bifurcation. Linear stability
theory indicates that, for supercritical capillary numbers, Ca > Cac, a continuous
range of wavenumbers [βL (Ca) , βH (Ca)] is unstable, where βL (Ca) and βH (Ca) are
the low- and high-wavenumber cutoffs, respectively (Coyle et al. 1990b).

The description of the mechanism for ribbing dates back to the work of Pearson
(1960) and Pitts & Greiller (1961); other descriptions are given by Savage (1977),
Ruschak (1985), Hakim et al. (1990), Rabaud et al. (1991), and Coyle (1992). Briefly
stated, the splitting meniscus and roller curvature cause a non-negative pressure
gradient normal to the meniscus free surface; from arguments forwarded by Saffman
& Taylor (1958) to explain viscous fingering, it can then be shown that, in the presence
of this positive pressure gradient normal to the free surface, and in the absence of
surface tension, disturbances to the free surface tend to grow (Pearson 1960; Pitts &
Greiller 1961; Savage 1977; Hakim et al. 1990; Coyle 1992; Gurfinkel Castillo 1995).
However, surface tension, acting through both ‘in plane’ and spanwise curvature, will
oppose this growth; hence the capillary number as the critical parameter governing
the instability.

1.2. Objectives

Despite the agreement between linear stability analysis (Coyle et al. 1990b; Rabaud
et al. 1991) and experimental observations of the onset of ribbing, several important
issues remain unresolved:

(a) Previous work cannot explain experimental observations of ribs over the entire
roller surface, or on the web far downstream from the meniscus. The source of the
instability outlined above – the free-surface normal pressure gradient – is not present
on the rolls; indeed, Coyle et al. (1990b) report eigenfunctions which decay rapidly
(spatially) in the downstream direction. This result indicates that the presence, or
more precisely, spatial persistence, of ribs cannot be explained solely in terms of
linear stability arguments.

(b) Previous work, in particular linear stability theory, cannot address the nonlinear
evolution and resulting spatial structure of finite-amplitude ribs. Prediction of the
nonlinear amplitude of ribs is critical both to the design of effective coating procedures
and to the selection of optimal operating parameters: it is the persistence of ribs of
finite amplitude, and not simply the meniscus-local presence of free-surface waviness,
that determines the quality of the finished product.

In this paper we propose numerical methods for the study of the nonlinear evolution
and spatial structure of ribs in symmetric forward-roll coating flows; we describe a
framework for understanding the formation, evolution, and spatial persistence of
ribs; and we shed light on the apparent contradictions between previous analytical
work and experimental observations. We formulate the problem in §2; present the
mechanism for ribbing in §3; discuss our numerical methods in §4; reproduce existing
results for two-dimensional forward-roll coating in §5; present new results for three-
dimensional finite-amplitude ribs in §6; and briefly state our conclusions in §7.
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Figure 2. Two-dimensional domain Ω∗ and associated boundaries: ∂Ω∗1 , inflow; ∂Ω∗2 , roller;
∂Ω∗3 , outflow; ∂Ω∗4 , free surface; and ∂Ω∗5 , symmetry.
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Figure 3. Three-dimensional domain Ω∗ and associated boundaries: ∂Ω∗1 , inflow; ∂Ω∗2 , roller;
∂Ω∗3 , outflow; ∂Ω∗4 , free surface; and ∂Ω∗5 , symmetry.

2. Problem formulation
The symmetric forward-roll coating device depicted in figure 1 consists of two

cylinders of equal diameter D∗ separated by a gap H∗ counter-rotating at the same
angular rate ω∗. In the analysis that follows, we consider a reduced problem on
the symmetrized domain, Ω∗, shown in figures 2 and 3 for the two-dimensional and
three-dimensional cases, respectively. The domain Ω∗ has boundary ∂Ω∗ =

⋃5
i=1 ∂Ω

∗
i ,

comprising five parts: ∂Ω∗1 , inflow; ∂Ω∗2 , roller; ∂Ω∗3 , outflow; ∂Ω∗4 , free surface;
and ∂Ω∗5 , symmetry. For three-dimensional analyses we limit our considerations to
domains that are b∗-periodic in the spanwise (z∗) direction; one periodic cell of the
domain is shown in figure 3. A periodic domain of finite length, b∗, does not permit the
study of the complete three-dimensional geometry of a forward-roll coating device;
in particular, we cannot consider end effects, which might give additional insight into
the nature of the ribbing instability (Coyle et al. 1990b; Rabaud et al. 1991; Bruyn
& Pan 1995).

The domain extends at inflow up to the point at which the cylinders are closest
(Coyle et al. 1986) – the nip region – and extends sufficiently downstream of the
nip (at outflow) so that the film profile and the pressure become uniform or, at
least, change very slowly. Our assumption (like that of Coyle et al. 1986, 1990b) of
symmetry about the y∗ = 0 plane, ∂Ω∗5 , improves numerical conditioning, decreases the
number of degrees of freedom, and reduces the overall computational time; collateral
‘full domain’ numerical calculations reported by Gurfinkel Castillo (1995) suggest
that both the two-dimensional steady states and the nonlinear three-dimensional
free-surface evolution are, indeed, y∗-symmetric for the range of Ca studied.

2.1. Governing equations

We consider the unsteady incompressible creeping flow of a Newtonian fluid of
viscosity µ∗ and density ρ∗ in the time-dependent domain Ω∗. The non-dimensional
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(without superscript ∗) governing equations are then given by

Re ui,t = − (p),j δij +
(
ui,j + uj,i

)
,j

in Ω, (2.1)

with boundary conditions

ni
[
−p δij + ui,j + uj,i

]
nj = pnip

ti
[
ui,j + uj,i

]
nj = 0

}
on ∂Ω1, (2.2)

ui = V ti on ∂Ω2, (2.3)

ni
[
−p δij + ui,j + uj,i

]
nj = pout

ti
[
ui,j + uj,i

]
nj = 0

}
on ∂Ω3, (2.4)

ni
[
−p δij +

(
ui,j + uj,i

)]
nj =

(
1/Ca

)
κ

ti
[
ui,j + uj,i

]
nj = 0

}
on ∂Ω4, (2.5)

ui ni = 0

ti
[
ui,j + uj,i

]
nj = 0

}
on ∂Ω5, (2.6)

and spanwise periodicity for all variables (say ξ) and associated derivatives,

ξ (x, y, z, t) = ξ (x, y, z + b, t) in Ω. (2.7)

Finally, the domain Ω is time-dependent: the velocity normal to ∂Ω4 of a material
point on the free surface must coincide with the corresponding fluid normal velocity,
uk nk|∂Ω4

.

We use standard Cartesian indicial notation (e.g. ui,j = ∂ui/∂xj), where subscript
indices range from 1 to 2 or 3 for the two-dimensional or three-dimensional problem,
respectively; δij is the Kronecker-delta symbol; κ is twice the mean curvature; ni is
the unit normal on ∂Ω; ti is the unit tangent (or tangents) on ∂Ω; pnip and pout are
the pressures imposed at inflow and outflow, respectively; σ∗ is the surface tension
at the fluid free surface; Re = ρ∗ V ∗H∗/µ∗ is the Reynolds number; Ca = µ∗V ∗/σ∗

is the capillary number; and V ∗ = ω∗D∗/2 is the tangential speed of the rollers. In
two dimensions, the single tangent satisfies ti × ni = ẑ; in three dimensions, (2.2),
(2.4), (2.5), and (2.6) apply for each tangent, however ti in (2.3) refers only to the first
tangent, assumed to be in the x× y plane of the roller.

Here length (xi), velocity (ui), time (t), and pressure (p) are scaled by H∗, V ∗, H∗/V ∗,
and µ∗V ∗/H∗, respectively. Although by definition H and V are equal to unity, they
are occasionally explicitly included for clarity. For future reference, we also introduce
several auxiliary coordinates: r and h, to measure the radial position; and s and θ,
to measure the downstream position along the rollers. The coordinate r (see figure 2)
measures the distance to the centre of the roller, r = (x2 + (D/2 +H/2− y)2)1/2, while
h is the distance to the roller surface, h = r − D/2. The coordinate θ (see figure 2)
measures position downstream from the nip, θ = arc cos

(
x/r
)
, while the coordinate

s measures the arclength parallel to the surface of the roller from the point at which
the cylinders are closest, s = r θ.

Finally, we consider in more detail the boundary conditions at inflow and outflow.
As regards inflow, we make the simplifying assumption that the region upstream of
the nip is flooded (Coyle et al. 1986), and, in addition, that the flow in this region
admits adequate approximation by lubrication theory. The pressure at the nip, pnip,
is thus only a function of the total volumetric flow rate per unit depth (Taylor 1963;
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Coyle et al. 1986),

pnip = 3
4

√
2π
[
1− 3

4
Q
]

2D1/2, (2.8)

where Q = Q∗/ (V ∗H∗), and Q∗ is the total volumetric flow rate per unit depth through
the nip. Equation (2.8) must be solved in concert with the fluid flow equations. Note
that it is only in (2.8) that lubrication theory enters into our calculations (Reinelt
1995).

Proceeding now to outflow, we note that, sufficiently far downstream of the nip,
the film profile and the pressure become uniform. The domain considered extends a
finite arclength s∂Ω3

along the roller, equivalent to an angle θ∂Ω3
; on ∂Ω3, that is, at

θ = θ∂Ω3
, we impose

pout =
1

Ca

2

D + 1.3H
, (2.9)

which is an estimate for the pressure jump across the free surface of the uniform
downstream film (Gurfinkel Castillo 1995). This boundary condition is asymptotically
consistent with (2.1)–(2.6) as D/H →∞ and s∂Ω3

→∞.

2.2. Governing parameters

In the problem formulation above we neglect advection and gravitational terms, since
these effects are, first, often not important, and second, not necessary to explain
and study the basic mechanisms of ribbing. In particular, we concentrate on flows
which commonly exhibit ribbing and in which inertial effects are negligible, Re → 0
(and hence ReCa → 0 for fixed Ca), as is typically the case in configurations that
involve extremely viscous fluids (e.g. H∗ = 100 µm, D∗ = 0.2 m, µ∗ = 11 Pa s,
ρ∗ = 1000 Kg m−3, σ∗ = 0.4 N m−1, and V ∗ = 0.12 m s−1 yields Re = 1 × 10−2, see
Coyle 1992). This allows us to neglect the advection term, Re uj ui,j , in the Navier–
Stokes equations in arriving at (2.1). We do not, however, eliminate the unsteady term,
Re ui,t, since the time constant associated with evolution of the instability is not known
a priori. As will be seen in §6, the time constant is such that the temporal dependence
of the problem enters primarily through the deformation of the physical domain;
thus, a posteriori, the Re ui,t term can be safely discarded, yielding a quasi-steady
Stokes problem in a time-dependent domain.

The ratio of gravitational forces to viscous forces, given by the Stokes number
St = ρ∗g∗ (H∗)2 / (µ∗V ∗), and the ratio of gravitational forces to surface tension

forces, given by the Bond number Bo = St Ca = ρ∗g∗ (H∗)2 /σ∗, are also assumed
small in this investigation and thus, by construction, we need not include gravity
effects (here g∗ is the acceleration due to gravity). Neglecting gravitational and
inertial effects places restrictions on the gap H∗ and the tangential velocity V ∗: in
particular, we cannot consider flows in the ‘wide-gap regime’, in which Re, St, and Bo
are order unity (Canedo & Denson 1989; Wang & Domoto 1994). Note also that we
cannot accurately treat ‘start-up’ flows from rest, as gravity will clearly predominate
for short times.

Within the stated assumptions, the physical problem is thus governed by three
parameters:

D =
D∗

H∗
, (2.10)

Ca =
µ∗V ∗

σ∗
, (2.11)

b =
b∗

H∗
, (2.12)
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Figure 4. Schematic showing regions of ribbing flow geometry and flow field: I meniscus;
II transition; III levelling film; IV levelled film.

where D is a geometric quantity that measures the relative importance of roller
curvature to roller separation, Ca is the ratio of viscous forces to surface tension
forces, and b is the spanwise ‘box size’. For the two-dimensional problem, only D
and Ca are of interest. Values of D and Ca in actual manufacturing processes can
span several orders of magnitude, D ∈ [50, 50 000] and Ca ∈

[
10−3, 103

]
; we will only

consider those (intermediate) values of D and Ca for which steady ribs can be readily
observed. We will, however, study a range of box sizes b. Note that in considering a
specific value of b, we impose a lower bound on the possible wavenumber content,
that is, we admit only wavenumbers β = mπ/b for m = 1, . . . ,∞.

3. Nonlinear framework for ribbing
In this section we present a framework for understanding ribbing in terms of

two well-understood physical phenomena: the growth of disturbances on a splitting
meniscus (Pearson 1960; Pitts & Greiller 1961; Savage 1977; Ruschak 1985; Coyle
et al. 1990b; Rabaud et al. 1991), and the levelling of a viscous film under the effects
of surface tension (Levich 1962; Orchard 1962; Kheshgi 1989; Probstein 1995). Since
the flow fields of these two phenomena are not compatible, we match the two regimes
by means of a transition region. In total, we describe the ribbed free-surface geometry
and flow field by the four regions shown in figure 4. A brief summary of each region
follows:

I Meniscus: In this region the pressure gradient normal to the free surface is
sufficiently large for ribs to grow and develop. The flow field is ‘diverging’ in nature:
the fluid near the free surface moves toward the crests of the ribs and away from the
troughs.

II Transition: In this region the flow field of the meniscus is matched to that of a
levelling film. The pressure gradient is not great enough to sustain the diverging flow
field, which decays due to the effects of viscosity towards the levelling solution. The
transition-region length is of order unity: Lt = L∗t /H

∗ ≈ O(1).
III Levelling film: In this region there is no appreciable pressure gradient, and thus

the ribs level under the effect of surface tension. This region can be extremely long,
depending on the wavenumber content and amplitude of the rib disturbance created
at the meniscus.

IV Levelled film: In this region the film is rib-free and the flow field is one-
dimensional.

In what follows, we address the mechanisms associated with the model in more
detail: first we discuss the nonlinear nature of ribbing (I); next we evoke film levelling
to explain the spatial persistence of ribs (III); finally, we match these two regimes (II)
to construct the complete model. The discussion that follows is only relevant for flows
for which ribbing is observed. It will become clear that certain quantitative aspects of
our model are incomplete, and must be provided by our full numerical computations.
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Figure 5. Levelling of a thin viscous film. The flow is in the (r∗, z∗)-plane (r∗ is normal to the
surface of the roller), driven by surface-tension-induced pressure gradients in the z∗-direction.

3.1. Meniscus instability

As described in §1, for sufficiently large Ca, the two-dimensional solutions are unstable
to spanwise perturbations to the free surface for wavenumbers β ∈ [βL, βH ]. As a
result of this supercritical bifurcation, an initially small disturbance will evolve into
a finite-amplitude rib, the amplitude and structure of which we present (based on
numerical results) in §6.

The driving pressure gradient normal to the free surface becomes vanishingly small
outside the meniscus region, and ribs, therefore, cannot grow either in the transition
region or further downstream. This observation is supported by the rapidly decaying
eigenfunctions found in the linear stability analysis of Coyle et al. (1990b); this picture
is also consistent with the experimental observations of Hasegawa & Sorimachi (1993),
in which local quenching of the instability in the meniscus region eliminates ribbing
everywhere downstream. Based on these arguments, we conclude that ribs observed
downstream of the meniscus can only originate in the meniscus.

3.2. Levelling of viscous films

In order to understand the spatial persistence of ribs, we first look at the physics of
levelling. We consider the levelling of a fluid film of mean thickness h∗o and viscosity
µ∗ under the effect of surface tension σ∗ (Orchard 1962; Kheshgi 1989). At time t = 0
the free-surface disturbance is of sinusoidal shape of amplitude A∗0 and wavelength
λ∗, as depicted in figure 5. We first consider the film to be infinite and invariant in s∗,
and subsequently include the ‘roller-propagated’ spatial decay.

We restrict our attention, as before, to configurations for which gravity and fluid
inertia terms are unimportant. If we assume that the perturbation amplitude is small
compared to the wavelength, A∗ � λ∗, and that the wavelength is large compared
to the film thickness, λ∗ � h∗o, the pressure difference that drives the levelling of the

film scales as ∆p∗ ≈ p∗a − p∗b ≈ σ∗A∗/(λ∗)
2, and thus ∆p∗/∆z∗ ≈ σ∗A∗/(λ∗)3. Assuming

locally fully developed plane Poiseuille flow, the local volume flow rate (per unit s∗

depth) in the spanwise direction is then given by Q∗z ≈
(
1/µ∗

) (
∆p∗/∆z∗

) (
h∗o
)3

. As
the volume of fluid that must be displaced scales with λ∗ A∗, the time to equilibration
scales as

τ∗ ≈ λ∗A∗

Q∗z
≈ µ∗

σ∗
h∗o

(
λ∗

h∗o

)4 (
for

λ∗

h∗o
� 1

)
. (3.1)

It can also be shown (Orchard 1962; Kheshgi 1989; Gurfinkel Castillo 1995) that, in
the limit of short-wavelength disturbances, the time to level scales linearly with the
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Figure 6. Time constant associated with the levelling of a disturbance on a thin film as a function
of the wavenumber βh = 2 π h∗0/λ
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wavelength of the disturbance,

τ∗ ≈ µ∗

σ∗
h∗o

(
λ∗

h∗o

)
for

λ∗

h∗o
� 1. (3.2)

Orchard (1962) and Kheshgi (1989) solve the equations of motion exactly for small-
amplitude disturbances without restrictions on the wavelength; the expression for the
timescale associated with levelling is shown to be

τ∗ = 2
µ∗

σ∗
h∗o

1

βh

1 + β2
h sech2βh

tanh βh − βh sech2βh
, (3.3)

where βh is the non-dimensional wavenumber based on the average film thickness,
βh = 2 π h∗o/λ

∗. Here τ∗ is defined such that the evolution of the amplitude of the
disturbance is given by A∗ (t∗) = A∗0 exp

(
−t∗/τ∗

)
. Equation (3.3) reduces to the

functional forms of (3.1) and (3.2) in the appropriate limits, as shown in figure 6.
Recall that, to obtain (3.3), we neglect gravitational effects which would accelerate
levelling, in particular for longer wavelength ribs; gravity thus sets a low-wavenumber
cutoff for the ribbed geometries that can be described accurately by this analysis.

To consider the movement of a fluid film entrained by rollers, we must now su-
perimpose on the levelling solution a velocity V ∗ normal to the plane of the film.
Levelling can be interpreted to occur as the film moves in the downstream direction;
time in (3.1), (3.2), and (3.3), can then be replaced by the distance travelled down-
stream, s∗, divided by the superimposed velocity, V ∗. From the previous expressions,
the length scale in the downstream direction associated with levelling, L` = L∗`/H

∗,
can be estimated as

L` = 3Caβ−4
hIV
hIV for

λ

H
� 1, (3.4)

L` = 2Caβ−1
hIV
hIV for

λ

H
� 1, (3.5)

where hIV (= h∗IV/H
∗) is the levelled film thickness, readily calculable once Q, the

volume flow rate per unit depth, is known. (A value of Q ≈ 1.3 can be used as
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(a)

I III

(b)

Figure 7. Schematic of flow fields: (a) meniscus region, (b) levelling region.

an estimate in forward-roll coating, as seen in §5.) Here L` is defined such that the
film amplitude decays as exp

(
−s/L`

)
, where s is the distance along the roller; the

temporal-to-spatial transformation formally requires that L`βh be sufficiently large.
Equations (3.3), (3.4), and (3.5) show two characteristics of levelling that we will

need to explain the spatial persistence of ribs. First, increased viscosity hinders the
levelling process, in effect decreasing the damping of the free-surface perturbation.
Second, the distance over which levelling takes place, L`, decreases monotonically
with wavenumber: high-wavenumber components will decay at a faster rate than
low-wavenumber components.

3.3. Transition from ribbing to levelling

The two flow fields discussed – meniscus and levelling – do not match; in the meniscus
region, the fluid is drawn into the crests of the ribs and away from the troughs, as
shown schematically in figure 7(a), while in levelling films, fluid is drained from the
crests, as shown schematically in figure 7(b). The flow geometries and flow fields
are matched in what we term the transition region. It can be shown, based on a
separation-of-variables argument (Gurfinkel Castillo 1995), that the diverging velocity
field will decay under the action of viscosity over a length, Lt = L∗t /H

∗, which is
on the order of the film thickness, hIV = h∗IV/H

∗. In fact, this assumes that the
downstream pressure gradient is zero in the transition region; in reality, the pressure
gradient is not identically zero, just not large enough to support the ribs, and thus
the meniscus velocity profiles decay over a slightly larger distance. On leaving the
transition region, the ribs level following the mechanisms outlined above.

3.4. Summary

The pressure gradient caused by in-plane curvature in the meniscus region (I) generates
ribs that move downstream with the rollers. As the ribs proceed downstream, the
flow field under the ribs suffers a (spatial) transition (in region II), over a distance
of order hIV, from the helical nature of the meniscus region to the ‘convergent’ flow
field of the levelling film region. Upon leaving the transition region, the ribs begin
levelling and persist downstream over a very long distance (region III), the extent of
which is given by (3.4) and (3.5). Owing to the dependence of the levelling rate on the
wavenumber content of the rib profile, the rib profile first becomes monochromatic
(still in the levelling region III) and, eventually, uniform far downstream (in region
IV).

We now present the numerical methods and the numerical calculations by which we
verify and quantify these predictions: the instability of the meniscus and subsequent
growth and saturation of meniscus ribbing; the coupling between the instability of
the meniscus and the ribs observed downstream; the rapid change in the spanwise
flow field in the transition region; and the slow levelling of the ribs.
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4. Numerical methods
In this section, we first present the methods used to generate the two-dimensional

base states required as a point of departure for our three-dimensional simulations.
We then present the methods used to obtain the three-dimensional steady ribbed
states. In each subsection we summarize the numerical methods adopted, discuss the
treatment of any non-conventional boundary conditions, and present the remeshing
and continuation algorithms developed. The numerical methods described in §§4.1.1
and 4.2.1 are implemented in a commercial fluid-dynamics code, NEKTONTM. In
particular, the commercial code serves as the simulation engine around which we build
our problem-specific algorithms for boundary conditions, remeshing, and continuation
(Gurfinkel Castillo 1995).

4.1. Methods for two-dimensional flows

4.1.1. Discretization and solution

For the solution of steady (ui,t ≡ 0 in (2.1)) two-dimensional problems, NEKTONTM

follows the numerical procedure developed by Ho & Rønquist (1992) for the efficient
treatment of flows in which surface tension forces play an important role in deter-
mining free-surface geometry. A brief description of the solution algorithm, hereafter
referred to as S, follows:

S0 Initialize iteration counter, SI = 0.
S1 Solve the spectral element spatial discretization of (2.1) subject to ui ni = 0 and

ti
[
ui,j + uj,i

]
ni = 0 on the free surface, ∂Ω4, with the remaining boundary conditions

on ∂Ω \ ∂Ω4 as described by (2.2), (2.3), (2.4), and (2.6).
S2 Compute the residual traction on ∂Ω4 based on the solution of step S1. The

residual traction is defined as ri ≡ τij nj − σ κ ni, in which τij nj is the traction on the
free surface; ri is identically zero for a steady-state solution.

S3 Perform direct solution of a Poisson problem for the correction to the free-
surface geometry, ∆xi. In particular, the correction to the free-surface curvature is
expressed as a function of ∆xi, yielding a Poisson problem in which the residual
traction, ri, enters as the inhomogeneity.

S4 Extend ∆xi, slightly under-relaxed, into the interior of the domain by means of
an elliptic (partial-differential-equation) operator (Ho & Patera 1990).

S5 Update all the mesh coordinates and the iteration counter, SI = SI + 1.
Steps S1 to S5 are repeated until the maximum ∆xi over all free-surface nodes is
1.5 × 10−4; when this tolerance is met, the flow is taken to be sufficiently close to a
steady state. Tolerances based on iteration-matrix minimum eigenvalues or condition
number would be preferred, but are not yet implemented.

The essential ingredients of this numerical procedure are: variational description of
the curvature (Ruschak 1980; Ho & Patera 1990); spectral element spatial discretiza-
tion (Rønquist 1988; Maday & Patera 1989); decoupled treatment of the domain
geometry; solution of the nonlinear system of discretized momentum equations by
Newton–Raphson iteration; and direct serial solution of the free-surface curvature
correction (Ho & Rønquist 1992). The variational description of the curvature pro-
vides a surface-intrinsic natural (weak) condition for continuity of the surface tangent
across elemental boundaries, and does not require a global coordinate system, orthog-
onal local coordinate systems, or a C1 free-surface description; the spectral element
spatial discretization provides a high-order representation of both the fluid flow and
flow geometry, and requires, for sufficiently regular solutions and stringent accuracy
requirements, fewer degrees of freedom and less computational effort than a low-order
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Figure 8. Example of a greatly distorted (vanishing Jacobian) mesh that arises during the
non-remeshed solution procedure S for D = 200, Ca = 1.

approach; and the decoupled treatment of the domain geometry and the flow solution
reduces the problem size relative to a coupled treatment, and permits fast subproblem
solution strategies. Note the spectral element domain discretization also allows for
simpler remeshing techniques due to the local structure intrinsic to the mesh.

4.1.2. Treatment of inflow boundary condition

As described in the problem formulation, the boundary condition at inflow, ∂Ω1,
relates the pressure at the nip, pnip, to the volume flow rate per unit depth through
the nip, Q; the latter, however, is not known a priori. Equation (2.8) is solved with
the fluid flow equations by means of an outer iteration, OI; this is possible since the
dependence of the final flow geometry on the nip pressure is weak. The treatment is
as follows:

OI0 Assume a value of Q = Q0 = 1.3 to calculate the corresponding pressure at
the nip, pnip, based on (2.8). Initialize the outer iteration counter, OII = 1.

OI1 Solve for the steady-state geometry, flow field, and hence flow rate QOII
, using

the procedure S described above.
OI2 Recompute the pressure at the nip from (2.8) based on a new volume flow

rate

Q =
QOII

+KOI QOII−1

1 +KOI

, (4.1)

and update the outer iteration counter OII. The under-relaxation constant KOI is
conservatively set to 6; smaller values can be used for Ca > 1, as for these cases the
flow rate is only weakly dependent on Ca.

If steps OI1 and OI2 are repeated until there is no appreciable change in the
computed steady flow geometries – say, using a stopping criterion based on the
maximum change of position over all free-surface mesh nodes between two computed
steady states, max∂Ω4

∆xi < 1× 10−4 – incorrect flow rates are obtained, as (2.8) will
not be satisfied. This is because the flow rate is a measure of the overall meniscus
shape, not the ‘local’ meniscus position, and thus small local changes in the meniscus
geometry can yield very different flow rates. We thus adopt a stopping criterion that,
in addition to max∂Ω4

∆xi < 1 × 10−4, requires that the difference in the flow rate
between two computed steady states be less than 0.05%.

4.1.3. Remeshing of two-dimensional geometries

For very large surface deformations the elliptic partial-differential-equation ex-
tension scheme for the mesh coordinates (Ho 1989; Ho & Patera 1990) may yield
elements that are nearly singular, that is, exhibit vanishing Jacobians, as observed
in figure 8. To remedy this problem we initiate automatic remeshing procedures
(Gurfinkel Castillo 1995) when the iteration counter SI exceeds a given value. A new
spectral element mesh is constructed based on (i) a series of templates (e.g. figures
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Figure 9. Representative information in mesh template for a two-dimensional domain
discretization.

(a)

(b)
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õ

0 10.82730.50.1727

Figure 10. Example of a fourth-order-interpolant edge template for the position of element-edge
internal nodes given edge boundary nodes: (a) nodes on rollers or free surface, (b) edge template
with Gauss–Legendre–Lobatto spacing, and (c) nodes on the mid-plane.

9 and 10), which provide the topology and relative placement of the elements and
nodes, and (ii) the current mesh, which provides the geometry, and, in particular, the
position of the meniscus. The remeshing procedure, R, is as follows:

R1 Extract necessary information from the current mesh: the position, x2D
s and

θs, of the mesh node where the free surface meets the symmetry plane; the piecewise
polynomials that define the free surface ∂Ω4; and the film thickness at outflow,
hf
(
θ∂Ω3

)
.

R2 Compute the desired position of the outflow boundary ∂Ω3, θ∂Ω3
= 2 θs, and

an estimate for the position of the end of the meniscus region, θII = θs + 0.8 π/180.
The meniscus region length is thus ∆θII = θII − θs and the film angular extent is
∆θIII = θ∂Ω3

− θII.
R3 Position element-edge boundary (vertex) nodes on the rollers ∂Ω2 and on the

mid-plane ∂Ω5 following the template description shown in figure 9. The element-edge
internal nodes are then placed relative to the position of the element-edge boundary
nodes by interpolation in arclength using templates such as that shown in figure 10(b).

R4 Discretize the free surface in curved segments following the template angular
prescription. The mesh nodes are then positioned along the free surface based on
the high-order polynomial information extracted in step R1. The variable used to
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(a) (b)

B

A

B

A

Figure 11. Blending algorithm of the two-dimensional remeshing procedure for the position of the
internal mesh nodes (step R6). Interpolation is shown for: (a) near-quadrangular element, and (b)
high-aspect-ratio element.

Figure 12. Example of remeshing for a not overly deformed domain. The original and final
meshes are overlaid.

parameterize the free surface is

θ̃ =


θ for θ > θII

arctan

(
y

1
2
(D +H) tan θII − x

)
θII

1
2
π − θII

for θ < θII,
(4.2)

which is a continuous single-valued parametrization that satisfies θ̃ = 0 where the
free surface intersects the mid-plane. The element-edge internal nodes are placed by
interpolation using θ̃ and the corresponding edge template. Note that, if the outflow is
moved away from the nip, information is not available to position the new nodes; for
all the mesh nodes in this region, the film thickness is set to be hf

(
θ∂Ω3

)
, independent

of θ.
R5 Construct the remaining internal element edges, as well as the element edges at

inflow, ∂Ω1, and outflow, ∂Ω3, as straight segments, using the Legendre edge templates
to position the nodes.

R6 Position intra-element nodes by interpolation of the positions of element bound-
ary nodes, as shown in figure 11. The particular blending algorithm chosen depends
on the aspect ratio of the element under consideration and the shape of the element
boundary (Gurfinkel Castillo 1995). A Legendre spacing is preserved on straight lines
connecting corresponding nodes on the generating sides (A and B of figure 11).

R7 Map field quantities onto the new mesh. This step is not needed (or used)
for the direct-solution creeping-flow two-dimensional problem, but will prove useful
later in the time-iterative solution of the three-dimensional problem. A bilinear
interpolation scheme is used to compute the field values on the new mesh from the
field values of the old mesh. Spectral accuracy is lost in the bilinear interpolation,
but subsequently regained at steady state.

An example of the results of a remeshing procedure is shown in figure 12 for a
discretization with 15 spectral elements. The order of the interpolant in each direction
in each element is 5, resulting in approximately 1500 total degrees of freedom (velocity,
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(a)

(b)

Figure 13. Remeshing of greatly distorted elements: (a) original mesh, (b) new mesh.

(a)

(b)

Figure 14. Example of remeshing-continuation: change in roller separation from
(a) D = 200 to (b) D = 100.

pressure, and geometry unknowns). The computational cost associated with this
two-dimensional remeshing is small compared to the fluid flow solution, and thus
remeshing can be performed every few iterations (SI), as shown in figure 12, even
if not strictly required. If remeshing is performed only when the mesh elements are
greatly distorted, the effects of remeshing are more easily visualized, as shown in
figure 13.

The modular nature of the remeshing procedure also allows for the implementation
of simple continuation schemes in parameter space. For example, if the solution for
a new {Ca,D} pair is desired, the existing solution for a different geometry D (and
Ca) can be modified to construct an initial estimate for the desired solution; more
precisely, the nodes on the rollers are moved in the radial direction to the desired
gap during step R3 of the remeshing procedure, and the spatial coordinates are then
appropriately rescaled. An example of remeshing used for continuation in D is shown
in figure 14.

4.2. Methods for three-dimensional flows

4.2.1. Discretization and solution

The numerical methods used for the simulation of the unsteady three-dimensional
free-surface fluid-flow problem comprise: variational description of the curvature
in three space dimensions (Ho & Patera 1991); arbitrary-Lagrangian–Eulerian de-
scription of the time-dependent domain (Donea 1983; Ho & Patera 1990); spectral
element spatial discretization (Rønquist 1988; Maday & Patera 1989; Ho & Patera
1990); semi-implicit fractional time stepping (Ho & Patera 1990; Rønquist 1991); and
parallel solution of the implicit (pressure and viscous) operators (Fischer & Patera
1991, 1994) by a preconditioned conjugate gradient algorithm (Rønquist 1991).

As described previously, the variational description of the curvature provides a
surface-intrinsic natural (weak) condition for continuity of the surface tangent across
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elemental boundaries, and does not require a global coordinate system, orthogonal
local coordinate systems, or a C1 free-surface description. The spectral element
spatial discretization allows for simplified domain decomposition and a high-order
representation of both the fluid flow and flow geometry – although it should be clear
that finite element spatial discretizations would serve equally well. The semi-implicit
approach allows for the implicit treatment of those components of the governing
equations that admit fast iterative solution via preconditioned conjugate gradient
iteration (to wit, the Stokes problem, which is further implicitly split into viscous
and pressure substeps), while permitting explicit treatment of those terms not readily
amenable to fast iterative solution (in our case the free-surface kinematic condition
and geometry-evolution operator).

A drawback to our approach is that explicit treatment of the domain evolution
places a stability restriction on the maximum allowable timestep (Ho 1989; Ho &
Patera 1990). The timestep criterion proposed by Ho (1989) is too restrictive for
the creeping flows (Re � 1) considered here; we find that, for most of the three-
dimensional cases considered in this paper, the timestep can be increased by a factor
of 10 over this previous estimate without loss of stability. Nevertheless, simulation
of the evolution from the unstable two-dimensional steady states to stable three-
dimensional steady ribbed states may require a great number of timesteps, as many
as 105 in some cases. Note also that our time-stepping scheme will evolve only to
stable equilibria.

4.2.2. Treatment of inflow and outflow boundary conditions

The treatment of (2.8), the boundary condition at inflow, is similar to the two-
dimensional case; in effect, we assume that the total volumetric flow rate, Q, is not
greatly affected by the downstream appearance of ribs (Coyle et al. 1990b). More
precisely, if we impose the nip pressure found in the two-dimensional calculation on
the three-dimensional flow, the resulting three-dimensional flow rate typically differs
from the two-dimensional flow rate by no more than 1%; no iterations are performed
to improve this result further.

The boundary condition at outflow, however, presents several difficulties: in three
space dimensions, the uniform pressure condition imposed in the two-dimensional
case, (2.4), is no longer stable – a spanwise perturbation to the free surface near
the outflow will grow (Gurfinkel Castillo 1995). For lack of a better approach, we
impose the Draconian – but stable – condition that the free-surface thickness at
outflow, h3D

f (z, θ∂Ω3
), is uniform in z and equal to the (D → ∞) two-dimensional

levelled film thickness, hIV: we set h3D
f (z, θ∂Ω3

) = hIV for z ∈ [0, b]. The deleterious
effect of this boundary condition is limited to a small region (in fact, one spectral
element) upstream of the outflow boundary, that is, the free surface transforms from
the possibly ribbed geometry to the uniform geometry in the last spectral element in
the domain. This perturbation in geometry is accompanied by a perturbation in the
spanwise velocity profile which can extend to the second spectral element upstream
of outflow in cases in which ribs are of large amplitude near outflow.

4.2.3. Remeshing of three-dimensional geometries

A typical discretization of the three-dimensional domain is shown in figure 15. The
three-dimensional mesh is an ‘extruded’ two-dimensional mesh with several levels of
elements in the extrusion direction, z. This particular mesh has 4 levels, 60 spectral
elements, and elemental interpolants of order 5 (in each spatial direction), resulting in
approximately 50 000 degrees of freedom (velocity, pressure, and geometry unknowns).
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b

z

x

Figure 15. Typical three-dimensional discretization of an extruded two-dimensional domain
comprising sixty spectral elements arranged in four levels.

To identify the discretization of the domain, we use the triad {number of elements per
z level, number of levels, order of the interpolant}, which, for figure 15, is {15, 4, 5}.

The arbitrary-Lagrangian–Eulerian description of the time-dependent three-
dimensional domain avoids frequent remeshing, which, in the three-dimensional case,
is rather expensive. However, global remeshing procedures become necessary when
the free surface deforms greatly, as can be the case when following the complete evo-
lution from an unstable two-dimensional steady state to a stable three-dimensional
steady state. The three-dimensional remeshing procedure is a direct extension of
the two-dimensional procedure, but now involves an additional template for the dis-
cretization in the z-direction (Gurfinkel Castillo 1995). An overview of the procedure,
R3D, follows:

R13D Extract necessary information from the current three-dimensional mesh: the
piecewise polynomials that define ∂Ω4

⋂
∂Ω5; the positions,

(
x3D
s , z

3D
s

)
, of the mesh

nodes on ∂Ω4

⋂
∂Ω5; and the position,

(
x3D
c , z

3D
c

)
, of the mesh node on ∂Ω4

⋂
∂Ω5

with z < b/2 at which the curvature changes sign. We then calculate from this
information a measure of the relative steepness of the ribs,

∆z̃3D = 2

∣∣arg maxz3D
s ∈[0,b] x

3D
s

(
z3D
s

)
− z3D

c

∣∣
b

. (4.3)

We shall use this information later to determine the relative sizes of elements in the
spanwise direction.

R23D Calculate, based on ∆z̃3D and a spanwise template such as that shown in
figure 16, the relative sizes, ∆z̃i, of the elements in the spanwise direction; note that
different templates are used for different numbers of spanwise levels. The template
determines the z-position of the element boundary sides normal to the extrusion
direction; the z-position of the corresponding internal nodes is determined using an
edge template. The spanwise resolution can be increased by considering more levels
of elements.

R33D Slice the three-dimensional domain in the nodal z-planes defined in step
R23D, and apply the two-dimensional remeshing procedure R to each slice (without
changing the position of the outflow boundary). Note that in this step trilinear, not
bilinear, interpolation is used. The resolution can be increased either by including
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Figure 16. Template for the z̃ = z/b coordinate of the element sides normal to the extrusion
direction. This template is for a mesh consisting of 7 levels in the spanwise direction.

more elements per level, or by considering higher-order polynomials within each
element.

The remeshing procedure R3D does not allow for the study of re-entrant ribs
(Tsiveriotis & Brown 1992), as in this case constant z-slices of the three-dimensional
domain are no longer topologically equivalent.

4.2.4. Numerical protocol

To study the three-dimensional ribbed states, we first obtain the two-dimensional
steady flow field. The two-dimensional geometry is then extruded to the desired do-
main depth b, and the free surface is perturbed sinusoidally with spanwise wavelength
b and amplitude A3D

o in the direction of the local free-surface normal. The (non-
dimensional) initial amplitude of the perturbation, A3D

o , is taken to be 0.025, except
near outflow, where the outflow boundary condition requires A3D

o → 0 as θ → θ∂Ω3

(Gurfinkel Castillo 1995). The system of equations (2.1)–(2.8) is then integrated in
time according to the numerical procedures described in §4.2.1. As a numerical test, we
compare in the Appendix our short-time results for A3D

o = 5 10−3 with the predictions
of linear stability theory (Coyle et al. 1990b); good agreement is obtained.

The steady-state stopping criterion is critical since rib growth can be relatively slow.
If the perturbed geometry is integrated in time until the maximum velocity normal
to the free surface falls below a preset tolerance, say when max∂Ω4∩∂Ω5

uini < 0.0025,
the geometry in most cases can be deemed to be close enough to the actual steady
state. This criterion fails for slightly supercritical-Ca small-amplitude ribs due to
the large time constants (‘critical slowing’) associated with the rib growth. A tighter
stopping criterion is used for such cases, however we have yet to derive a rigorous
residual-perturbation relation which reflects the eigenstructure/timescales of the three-
dimensional problem.

The computational time to achieve a steady state from the initial two-dimensional
perturbed domain depends on the capillary number Ca, the domain depth b, and
the resolution { . , . , . }, but may range from 50 to 800 hours on 16 nodes of an Intel
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Ca

V

Figure 17. Two-dimensional meniscus geometry, for D = 200, as a function of capillary number:
Ca = 0.0316, 0.1, 0.316, 1, 3.16, 100.

i860 Hypercube. The high computational cost is a direct consequence of the explicit
treatment of the domain evolution and the resulting restrictive timestep. In order to
decrease the computational costs in the future, semi-implicit procedures similar to
those used in two dimensions must be pursued.

The spanwise resolution needed to adequately resolve the steady free-surface ge-
ometry is not known a priori. Initially, when the free surface is not greatly perturbed,
relatively few levels of elements suffice; as the free surface deforms, more resolution
is required. This increase in resolution is readily effected by selecting a new tem-
plate, with more levels, in step R23D of the remeshing procedure R3D. This adaptive
resolution scheme can greatly reduce computer time, by as much as an order of mag-
nitude for geometries that require high resolution (e.g. eight levels) in the steady state.
Furthermore, once a steady ribbed state is obtained for a given geometry, Ca, and
box size, {D,Ca, b}, continuation and remeshing procedures reduce the computational
cost to obtain a new steady ribbed state (e.g. different b) to order 50–200 hours of
computer time (Gurfinkel Castillo 1995).

Our numerical procedures also permit relatively inexpensive verification of accu-
racy. In particular, for certain representative cases, the computed steady ribbed states
are mapped onto finer meshes (with more spanwise levels, and higher-order elemental
interpolants), and then integrated further in time. No significant changes in menis-
cus geometry are observed, leading us to conclude that the steady states obtained
with the ‘coarse’ meshes are, indeed, adequately resolved. We also perform a few
‘uniform-in-time’ higher-resolution simulations from the initial extruded geometry
with infinitesimal spanwise perturbation: the same steady solutions are obtained as
in the adaptive spanwise-resolution simulations, as will be shown in §6.

5. Two-dimensional results
In this section we first present qualitative results for the two-dimensional problem,

and then perform quantitative comparisons with results reported by Coyle et al. (1986).
Our discussion is brief, intended only as a point of departure for the three-dimensional
considerations. Figure 17 shows the dependence of meniscus geometry on the capillary
number Ca; with increasing Ca, the meniscus is drawn closer to the nip. This
movement is only gradual for high Ca while it is dramatic in the low-Ca range.
The downstream migration of the meniscus with decreasing capillary number is
accompanied by a qualitative change in the flow field: for low Ca, a recirculation
region appears near the meniscus, as shown in figure 18.

We now turn to three quantitative measures of the flow field and geometry: the
volume flow rate through the nip, Q; the location of the stagnation point on the
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(a)

(b)

Ca =100

Ca = 0.1

Figure 18. Characteristic flow fields (streamlines): (a) high Ca – no recirculation zone,
(b) low Ca – recirculation zone.
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Figure 19. Non-dimensional volume flow rate, Q, as a function of Ca for D = 40 (3),
D = 200 (2), andD = 1000 (◦).

splitting meniscus, x2D
s ; and the location of the first stagnation point downstream

from the nip along the symmetry plane, x2D
1 . The dependence of Q on the capillary

number Ca, for D = 40, 200 and 1000, is presented in figure 19, which shows the
weak dependence of the flow rate, and thus the nip pressure, through (2.8), on the
capillary number Ca and on the geometric parameter D. With increasing Ca there is
a monotonic decrease in Q. This property is also observed with increasing D, though
the dependence it is not as great.

The location of the splitting meniscus is shown in figure 20 as a function of the
capillary number Ca for D = 40, 200, and 1000. The position of the meniscus, x2D

s ,
is scaled by the geometric factor (2D)1/2 as suggested by lubrication theory analysis
(Coyle et al. 1986). For most of this parameter range, the (2D)1/2 scaling accurately
represents the effect of D, however when recirculation sets in at low Ca, the three
curves for different D no longer precisely collapse to a single curve.

Figure 21 shows the location of the first stagnation point downstream from the
nip along the symmetry plane, x2D

1 , as a function of Ca and D. Note that x2D
1 = x2D

s

(x2D
1 < x2D

s ) in the absence (presence) of recirculation. For high Ca, only one
stagnation point is observed along the symmetry plane, ∂Ω5, that is, there is no
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Figure 20. Film split location, x2D
s , as a function of Ca = 0.0316, 0.1, 0.316, 1, 3.16, 100 for

D = 40 (3), D = 200 (2), and D = 1000 (◦).
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Figure 21. Position of first stagnation point downstream from nip, x2D
1 , as a function of Ca for

D = 40 (3), D = 200 (2),and D = 1000 (◦).

recirculation, x2D
1 = x2D

s . As the capillary number is decreased, near Ca ∼ 0.8, a
second stagnation point arises, x2D

1 < x2D
s , signalling the presence of a recirculation

zone. The location of the first stagnation point downstream of the nip is weakly
dependent on Ca, indicating that it is mainly determined by the viscous pressure
gradient in the fluid.

Finally, in figure 22, we compare our results with those reported by Coyle
et al. (1986); excellent agreement is obtained.
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Figure 22. Film split location, x2D
s , as a function of Ca for D = 200: �, this study; ×, Coyle et al.

(1986). First stagnation point downstream from the nip, x2D
1 : 2, this study; +, Coyle et al. (1986).

6. Three-dimensional results
In this section we present simulation results for the unsteady three-dimensional

free-surface fluid flow problem. The calculations serve the purpose of demonstrating
our three-dimensional simulation methodology, and validating and quantifying the
framework of §3. We first present the evolution from a perturbed unstable two-
dimensional steady flow geometry to a stable three-dimensional steady ribbed state,
and compare these results with the ‘predictions’ of the analysis of §3. Both unsteady
(§6.1) and steady (§6.2) issues are addressed. We then further validate our ribbing
interpretation through a parametric (Ca) investigation of steady ribbed results (§6.3).
Finally, in §6.4, we briefly discuss nonlinear state selection through variation of the
boxsize.

6.1. Nonlinear evolution to steady ribbed states

To allow for adequate visualization of the meniscus and the ribs during the evolution
towards the steady state, we consider the case of D = 200 (with Re = 10−2 in (2.1));
the critical conditions for this geometry (and Re = 0) reported by Coyle et al. (1990b)
are Cac = 0.32 and βc = π/30. We present results for the following set of parameters:
D = 200, Ca = 3.14� Cac = 0.32, and b = λc/3 = 10 (note that β = 3 βc is presumed
to correspond to, and is in fact, an unstable mode).

The evolution of the free-surface geometry from the unstable two-dimensional
steady state to the stable three-dimensional ribbed state is shown in figure 23. Full
domain (non-y-symmetrized) simulations at selected D, Ca, b yield effectively identical
results to the symmetric calculations (Gurfinkel Castillo 1995). Before analysing the
solution in more detail, we address certain numerical issues: adaptive spanwise (z)
resolution; (x, y, z) spatial resolution; and the stopping criterion. Note that temporal
resolution is not an issue since the timestep used is (unfortunately) very small owing
to numerical stability considerations (Ho 1989).

To demonstrate the independence of the evolution towards the steady state with
respect to spanwise resolution, this and other selected ‘representative’ cases are
repeated using the final (high) resolution mesh {15, 6, 5} during the entire evolution,
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 23. Spanwise-adaptive simulation of the evolution to a steady three-dimensional ribbed
state for D = 200, Ca = 3.14, and b = 10: (a) t = 0, (b) 22, (c) 26, (d) 30, (e) 40, (f) 48. Note that,
for much of the calculation, only three or four z-levels are required.

as shown in figure 24. The ratio of the computational time to perform the simulation
shown in figure 24 to the time to perform the spanwise-adaptive simulation shown in
figure 23 is roughly 10: the computer time on 16 nodes of an Intel i860 Hypercube
required for the high-resolution simulation is approximately 800 hours, compared to
approximately 80 hours for the adaptive case. Note that, owing to the distortion
near the meniscus, neither simulation could be successfully completed without the
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(a)

(b)

(c)

(d )

(e)

Figure 24. Uniformly high-resolution simulation, {15, 6, 5}, of the evolution to a steady
three-dimensional ribbed state for D = 200, Ca = 3.14, and b = 10: (a) t = 0, (b) 22, (c) 30,
(d) 40, (e) 48. The steady state shown in (e) is nearly identical to the steady ribbed state shown in
figure 23(f).

remeshing techniques presented in §4.2.3. The remeshing, performed on a serial
workstation, requires on the order of 100 additional hours for both the high- and
adaptive-resolution simulations.

In order to verify the independence of the ribbed geometry with respect to (x, y, z)
final resolution, the solution of figure 23 is mapped (see §4.2.3) onto a finer mesh,
{15, 8, 7}, with approximately 350 000 degrees of freedom. The governing equations
are then further integrated in time until the (in fact, a slightly tighter) stopping
criterion is again satisfied. The two geometries differ only very slightly (Gurfinkel
Castillo 1995). We also note that Galerkin spectral element spatial discretization
generally rewards inadequate resolution with oscillations corresponding (roughly) to
the highest-order polynomial that can be represented by the discrete space. We use
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Figure 25. Evolution of the meniscus profile at the mid-plane, ∂Ω4

⋂
∂Ω5, for the D = 200,

Ca = 3.14, and b = 10 simulation of figure 23. The times plotted are t = 0, 12, 22, 26, 31, 41, 44,
46, 48, and 60.

this symptom as an indication that remeshing is required; all results presented are
essentially oscillation-free.

For the 130 000 degrees-of-freedom resolution {15, 6, 5} calculation, the free-surface-
velocity-based stopping criterion is satisfied near t ≈ 48, at which point we deem the
geometry to have achieved a steady state. In order to verify the independence of
the ribbed geometry with respect to the stopping criterion, the maximum allowable
normal free-surface velocity is reduced by 50% and the governing equations are then
further integrated in time until this tighter stopping criterion is satisfied, at t ≈ 49.
The resulting free-surface geometry differs from the t ≈ 48 case only near the rib
tip, at which location changes in primarily the high spanwise wavenumbers conspire
to increase the rib amplitude. It is possible that these tips continue to slowly grow,
evolving to a different shape at very long times; however based on the spanwise
Fourier analysis given below, we do not believe that this will, in fact, occur.

From this (albeit somewhat limited) series of tests at a difficult parameter value
(high Ca), we believe that both our three-dimensional transient and steady solutions
are accurate to within several percent in all relevant norms. With more efficient
numerical procedures, such as implicit timestepping techniques and ‘direct’ solution
strategies similar to those employed in our two-dimensional calculations, more exten-
sive convergence studies can, and should, be performed. However, certainly at low
Ca, and even at very supercritical Ca, we do not believe that any of our conclusions
are the result of numerical artifacts.

We now turn to a more thorough interrogation of the time-dependent solution.
The evolution of the meniscus geometry from the unstable two-dimensional steady
state to the stable three-dimensional ribbed steady state is shown in figure 25. The
profiles, x3D

s (z, t), correspond to the intersection of the free surface with the symmetry
plane, ∂Ω4

⋂
∂Ω5, at different times, t. For this highly supercritical Ca, the initially

very small higher spanwise harmonics attain significant amplitude as the rib achieves
finite amplitude. This, in turn, is reflected in the steepening of the ribs as the steady
state is approached.
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Figure 26. Time evolution from the perturbed unstable two-dimensional steady-state profile to
the three-dimensional stable steady state, for D = 200, Ca = 3.14, and b = 10. We present the

meniscus profile amplitude at the mid-plane, As0 (t) =
(
maxz x

3D
s (z, t)−minz x

3D
s (z, t)

)
/2 (©), and

the amplitudes of the first six meniscus spanwise Fourier modes, Asm (t) (wavenumbers mπ/b) m = 1
(3), 2 (2), 3 (4), 4 (5), 5 (

⊗
) and 6 (◦).

We demonstrate the growth of the harmonics in figure 26 as a plot of the temporal
evolution of the total disturbance amplitude, As0 (t) =

(
maxz x

3D
s (z, t)−minz x

3D
s (z, t)

)
/2, and of the amplitudes of the first six meniscus Fourier modes, Asm(t), obtained
by performing a spanwise (z) Fourier transform of x3D

s (z, t). During most of the
evolution toward the steady state the higher-wavenumber modes are not appreciable;
they do become important, however, as the steady state is approached, consistent
with the steepening of the rib observed in figure 25. The data in figure 25 at times
t ≈ 48 and t ≈ 49 correspond to geometries that satisfy the normal and tightened
stopping tolerances, respectively, described above. The equations of motion are then
even further integrated in time, to t = 60, to verify that the stopping criterion used is
adequate. Figure 26 clearly shows that, at t = 48, all the modes have indeed saturated,
with the exception of the very highest wavenumbers; these modes continue to grow
slightly, finally equilibrating (at least for m < 25, for which the amplitude is already
small) by t ≈ 60. (For rollers with D = 20 cm rotating at 12 r.p.m., the time constant
for rib growth for Ca = 3.14 would be of the order of 50H∗/V ∗ ≈ 0.04s, which is
consistent with experimental observation.) For the lower-Ca cases studied, even the
highest-wavenumber components are unambiguously saturated upon satisfying our
stopping criterion.

6.2. Properties of the steady ribbed state

In the previous subsection we confirmed the unstable nature of the two-dimensional
steady flow geometry for the supercritical Ca considered, and described the evolution
to the stable three-dimensional ribbed state. We now concentrate on the structure
of the stable three-dimensional steady ribbed state in order to quantify the coupling
between the meniscus instability and the ribs downstream. In particular, we wish to
compute the lengths of the regions identified in §3.
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Figure 27. Steady free-surface profiles for D = 200, Ca = 3.14, and b = 10, as a function of
downstream position: θ = 10.35◦, 11◦, 12◦, 13◦, 14◦, 15◦, 16◦, 17◦, 18◦ (the sharp profile for
θ = 10.35◦ is an artifact of the radial projection). Note that hf (z, θ) → Q/2 sufficiently far
downstream.

6.2.1. Downstream ribs

As described in §3, the meniscus geometry controls the free-surface profile every-
where, and we thus expect to observe ribs downstream from the meniscus. Since the
view and lighting in figure 23 does not clearly show the ribs downstream on the rollers,
we present in figure 27 profiles of the steady three-dimensional free surface, hf (z, θ),
at different downstream locations θ. In figure 28 we display the amplitude of the rib,
given by Ah0

(θ) =
(
maxz hf (z, θ)−minz hf (z, θ)

)
/2. As expected, the rib amplitude

decreases with distance from the nip; note the significant, but localized, effect of the
outflow boundary condition on the flow geometry (Ah0

→ 0 as θ → θ∂Ω3
≈20.4◦).

6.2.2. Transition of flow fields: diverging to levelling

The decrease in amplitude of the ribs for increasing θ indicates the transformation
of the spanwise fluid flow pattern from a rib-sustaining diverging flow field (region I
of §3) to the convergent field of the levelling film (region III of §3). Figure 29 shows
the dependence of the free-surface spanwise velocity on the downstream position;
clearly, in the transition region (region II of §3) between θ = 12◦ and θ = 13◦, the
nature of the spanwise velocity profile changes – the spanwise velocity no longer
feeds the crest of the rib, but rather, begins to drain fluid away. This is clearly seen
in figure 30, in which we present the spanwise velocity direction at θ-slices of the
domain Ω corresponding to the meniscus, transition, and levelling regions suggested
by the schematic in figure 7. From figure 30 we can bound the extent of the transition
region Lt, by Lt ≈ (D/2) π (13◦ − 12◦)/180 ≈ 1.75, which is, indeed, order unity.

6.2.3. Levelling of ribs

We now study the levelling of the nonlinear ribs as final confirmation of the
behaviour described in §3. The levelling problem is, to first order, linear, and thus
the interaction between modes can be neglected. Figure 31 shows the dependence
of the total rib amplitude, Ah0

(θ), and of the amplitude of the individual spanwise
Fourier modes, Ahm(θ), m = 1, . . . , 4, of hf (z, θ) as a function of the roller angle, θ.
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Figure 28. Evolution of total rib amplitude Ah0
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for D = 200, Ca = 3.14, and b = 10, as

a function of the roller angle θ. The effect of the outflow boundary condition is localized near
θ = θ∂Ω3
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Figure 29. Steady free-surface spanwise velocity profiles, uz(z, θ), at different downstream positions
θ = 9◦, 11◦, 12◦, 13◦ for D = 200, Ca = 3.14, and b = 10.

In figure 31, the absolute value of the slopes define the lengthscale over which the
individual mode amplitudes will persist. As the ribs move downstream, the total rib
amplitude asymptotically approaches, from above, that of the lowest-wavenumber
mode, as higher-wavenumber modes decay at a faster rate. This is more clearly
observed in figure 32, in which the magnitudes of the spatial decay, L`m , are plotted as
a function of the corresponding film wavenumber, βh = m 2 π hIV/b = m 2 hIV 3 βc. The
magnitude of the slopes presented in figure 32 are calculated at a given downstream
location, θ = 16◦, which is unambiguously in the levelling region yet sufficiently far
upstream of outflow. The results for L`m in figure 32 are seen to be in good agreement
with the prediction of (3.3).
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Figure 31. Dependence of rib amplitude Ah0
(θ) (©), and of the amplitude, Ahm (θ), of the profile

spanwise Fourier modes with film wavenumber βh = m (2 π hIV/b), m = 1 (3), 2 (2), 3 (4), 4 (5),
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Figure 32. Levelling-region lengthscale, L`m , for the rib (©), and for the first four profile spanwise
Fourier modes with wavenumbers βh = m (2 π hIV/b), m = 1 (3), 2 (2), 3 (4), 4 (5); the solid line
is based on (3.3). As for all results in this subsection, D = 200, Ca = 3.14, and b = 10.

in the speed of the rollers, in that we continue our results in Ca to achieve the set
of equilibria shown in figure 33. As expected, as Ca is increased, in addition to the
two-dimensional migration of the meniscus towards the nip described in §5, there is
a monotonic increase in three-dimensional rib amplitude and in rib steepness. Figure
33 also suggests that as Ca is increased, the meniscus profile approaches a very steep
square-cell shape similar to that observed in viscous fingering as Ca → ∞ (Rabaud
et al. 1991).

In order to quantify the harmonic content of the meniscus rib profiles we extract
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Figure 34. Amplitude of the spanwise Fourier modes of the steady-state profiles of ∂Ω4

⋂
∂Ω5,

Asm , for D = 200, b = 30, as a function of the corresponding Fourier mode wavenumber β = mβc.

(a) Ca = 0.5
(
©
)
, 0.75 (3), and 1 (2) (for wavenumbers higher than those shown, the amplitude is

uniformly less than 10−3); (b) Ca = 3.14 (◦) and 5 (3).

the amplitudes of the spanwise Fourier modes of each profile. Figures 34(a) and
34(b) show the amplitudes of the Fourier modes as a function of their corresponding
wavenumber for moderately supercritical and highly supercritical Ca, respectively.
The rib profiles for the moderately supercritical Ca are essentially monochromatic
(figure 34a) while the profiles for highly supercritical Ca (Ca� Cac) exhibit significant
harmonic content (figure 34b). The convergence of the profiles to an asymptotic form
for increasing Ca is again suggested by the low-wavenumber similarity of the two
solutions presented in figure 34b. The stopping criterion used possibly affects the
accuracy of the predicted steady-state amplitude of the higher-wavenumber Fourier
modes; we believe that for the cases studied this error is minor (see §6.1).
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Figure 35. Levelling-region length, L`m , of the Fourier modes of the rib profile as a function of
spanwise wavenumber, βh = m (2π hIV/b), for D = 200, b = 30/2n−1, and Ca = 1, n = 1 (©◦ ), 2 (3◦ ),
3 (2◦ ), 4 (4◦ ), and Ca = 5, n = 1 (©), 2 (3), 3 (2), 4 (4), 5 (5). The solid line is based on (3.3).

6.3.2. Transition and levelling of ribs

We have determined that, for the cases considered here, the transition region length
Lt, estimated as in §6.2.2, is indeed O(1). Neither our definition nor our calculation
procedure for Lt are sufficiently precise to warrant further elaboration here.

We now turn to levelling. Following procedures similar to those used to construct
figure 32, we collect in figure 35 the quantity L`m/ (Ca hIV) for several of the ribbed
geometries obtained (note we also include numerous results for box sizes other than
b = λc). The quantity L`m/ (Ca hIV) should be a function only of spanwise Fourier
mode film wavenumber βh = m 2π hIV/b, as confirmed in figure 35. Furthermore, there
is very good agreement with the predictions of (3.3), save at very low wavenumbers.
We conjecture, but do not yet have conclusive evidence, that the latter discrepancy is
due to low signal-to-noise ratios, as the decay rates are very small as βh → 0.

6.4. Nonlinear state selection

We now present results for D = 200 and Ca = 0.5 in order to show the effect of the
box size b and the history of the flow on the resulting steady ribbed geometry and
flow field. We consider the computationally simpler case of a slightly supercritical
Ca, in particular, Ca = 0.5; recall that Coyle et al. (1990b) report Cac = 0.32 and
λc = 30 for D = 200.

Figure 36 shows the steady-state profiles of ∂Ω4

⋂
∂Ω5 as a function of the box size

b = λc/2
n−1 for n = 1, . . . , 3, in each case beginning with initial conditions as described

in §4.2.4. We observe that the high-wavenumber cutoff is less than 4βc = 4 π/30 since
the rib amplitude for b = λc/4 vanishes. We next considered b greater than λc, and
found that it proved impossible to obtain a one-rib stable ribbed geometry with
b = 2 λc. Furthermore, if we take as initial condition a two-ribbed state created
by periodically replicating our one-rib b = λc state of figure 36 (thus considering
b = 2 λc), the flow evolves to a two-ribbed b = 2 λc steady state which differs from the
replicated b = λc initial condition only in the presence of a very small (nonlinearly
generated) subharmonic β = βc/2 component.
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Figure 37. Steady-state profile of ∂Ω4

⋂
∂Ω5 for D = 200 and Ca = 0.5 for b = λc = 30 (solid line)

for an initial condition corresponding to a slight perturbation of a periodically replicated one-rib
b = λc/2 steady state (dashed line).

We have thus observed that we cannot obtain a one-rib steady state for Ca = 0.5
and D = 200 and b = 2 λc, but that it is simple to obtain a two-rib solution. It
is then natural to ask whether we can produce a two-rib b = λc state rather than
a one-rib b = λc solution by choosing as an initial condition a two-rib profile; the
answer is affirmative. We show in figure 37 the (stable) two-ribbed b = λc steady-
state solution that results from an initial condition which is a slight perturbation of
a periodically replicated one-rib b = λc/2 steady profile. As expected, the two-rib
b = λc solution and the replicated one-rib b = λc/2 steady state differ slightly in
low-wavenumber content. More importantly, however, the two-rib b = λc steady state
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Figure 38. Spectral element prediction of the growth-rate γ for an unstable perturbation for
D = 40, Ca = 15, and b = 9. Coyle et al. (1990b) predict γ ≈ 0.01.

dimensional scheme, the development of better outflow boundary conditions, and the
extension of the remeshing schemes to allow for greater topological variation – but
also on the physical side – e.g. the development of a better understanding of state
selection, the consideration of a larger range of parameters, the study of end effects,
and the extension to non-Newtonian working fluids. Only then can our results be
directly applied to practical systems of interest.
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Appendix. Linear stability numerical test
In §5 we validate our nonlinear two-dimensional methods by comparison with the

results of Coyle et al. (1986). No nonlinear three-dimensional results are available, so
we limit our numerical tests to the linear stability predictions of Coyle et al. (1990b).
(The levelling results of figure 26 also serve as a consistency check, albeit somewhat
indirect and circular.) Note that our numerical methods are a very inefficient means
by which to perform linear stability analysis, especially near criticality; we present
this comparison only to demonstrate that our spectral element methods accurately
compute a known three-dimensional time-dependent solution.

In Coyle et al. (1990b), growth rates are given for three-dimensional disturbances to
the two-dimensional steady states. For D = 40, Ca = 15, and β = π/9, the reported
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growth rate γ is slightly less than 0.01 (appropriately scaled from figure 25 of Coyle
et al. 1990b). In figure 38 we present the time evolution of our prediction for γ,
computed as

lnAs0 (t+ ∆t)− lnAs0 (t− ∆t)

2∆t

with ∆t ≈ 2×10−4, for the evolution of a three-dimensional disturbance from an initial
amplitude of As0 = 0.005. As expected, the growth rate rapidly converges to a value
near 0.01, in agreement with the result of Coyle et al. (1990b). (Note it is not clear in
Coyle et al. (1990b) which boundary conditions are applied on the three-dimensional
disturbance at inflow; in our direct-simulation approach, the perturbation satisfies, to
first order, the homogeneous version of (2.2).)
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